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Spinor Approach to Gravitational Motion and 
Precession 
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The translational and rotational equations of motion for a small rigid body in 
a gravitational field are combined in a single spinor equation. Besides its computa- 
tional advantages, this unifies the description of gravitational interaction in 
classical and quantum theory. Explicit expressions for gravitational precession 
rates are derived. 

1. INTRODUCTION 

This article applies the method o f  mobiles to describe the motion of a 
small rigid body in a gravitational field. Emphasis is laid on computing the 
gravitational precession of a gyroscope, since that is a case of major 
experimental interest. Aside from its perspicuity and efficiency, the method 
of mobiles has the great virtue of unifying the description of gravitational 
interactions in classical and quantum theory. This is demonstrated at the 
end of the paper, where gravitational interactions in the Dirac theory are 
determined. 

A spinor form for the method of mobiles was developed in Hestenes 
(1974a, b), where it was used to describe the motion of charged particles, 
including electron spin precession in electromagnetic fields. The method 
was generalized to describe parallel transport along geodesics in Hestenes 
and Sobczyk (1984). Here I apply it specifically to the description of 
gravitational precession. I will freely employ the notation and results of the 
preceding paper (Hestenes, 1986), and begin with a brief review of concepts 
and results from Hestenes (1974a) and Hestenes and Sobczyk (1984). 
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2. THE MOBILE EQUATIONS 

For present purposes, a mobile is a comoving orthonormal frame on 
a timelike curve. The motion of a rigid body of negligible dimensions is 
represented by a mobile {e~ = e ,~(x(r))  = e~(r)}. The history of the mobile 
is a timelike curve x = x ( r )  parametrized by proper time r. The (proper) 
velocity of  the mobile is the vector 

eo = v = d x / d r  (1) 

The triad {ek, k = 1, 2, 3} describes the attitude of the body, with e3 taken 
to be the spin axis. So the internal angular momentum or spin of the body 
is given by 

s = Is le3  (2) 

where Is[ is the magnitude of the spin. 
At each point of its history, the mobile {e.} is related to a given fiducial 

frame {y.} by a Lorentz transformation 

e~. = R % . R  (3) 

where the spinor R is an even multivector satisfying 

/~R = 1 (4) 

Thus, R = R ( x ( r ) )  is a "spin representation" of the Lorentz transformation 
rotating frame %. into e~. at each point on the mobile history. 

The mobile equations of motion are 

6,,e,~ = dve~. + wo . e~ = O . e ,  (5) 

where the codifferential 

6~ = v" [] = v~U1. = a /  6r  (6) 

is equivalent the coderivative with respect to proper time, and 

d / d r = -  dv = v " d .  (7) 

defines the fiducial derivative with respect to proper time as equivalent to 
the fiducial differential. From Hestenes (1986) we know that the fiducial 
differential has the property 

d~e. = 0 (8) 

Hence, 

av [ av"~ 
d-7= k - - ~  ) y .  (9) 
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where v ~" ~- v. yC The translational equation of motion for the mobile is 
the equation (5) for eo = v, which we can write in the form 

dv/d~'= (~ -wv ) "  v (10) 

The single rotor equation 

dR/d~=�89  (11) 

is equivalent to the four equations of motion (5), as is easily shown by 
differentiating (3). This single equation describes spin precession of the 
rigid body well as motion along its history. 

The angular velocity of the mobile is a function of  the physical forces 
acting on it. Gravitational forces are described by the bivector w,, while 
nongravitational forces are described by specifying ~.  It seems to be gen- 
erally true that independent forces make independent contributions to the 
angular velocity of a mobile. This generalizes the principle ofsuperposition 
of forces familiar from classical mechanics. It greatly simplifies the analysis 
of complex problems by allowing us to determine independently the angular 
velocities due to different forces and add the results. 

As explained in Hestenes (1974b), for a spinning particle (such as an 
electron) with mass m, charge e, and gyromagnetic ratio g = 2 in an external 
electromagnetic field F, the bivector f~ in (11) is given by 

= (e /m)F  (12) 

Hestenes (1974b) finds the exact flat-space (w~--0) solution of equation 
(11) for an arbitrary combination of uniform electric and magnetic fields, 
for a plane wave field and for the Coulomb field. 

3. SPACE-TIME SPLIT 

To facilitate physical interpretation and comparison with the results 
of others, we need to express our results in terms of  relative variables with 
respect to a specified reference frame. This is best done by following the 
general method laid out in Hestenes (1974a). At every spacetime point x 
the fiducial timelike vector 3,0 = y0(x) determines an instantaneous rest 
frame, that is, a local split of spacetime into space and time. The proper 
velocity is split into space and time components by 

Vyo =/3(1 +v) (13) 

where 

/3 -= v" Yo = (1 -v2) 1/2 (14) 
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and 

V = m  
v ^ y o  

V" To 

dx 

Hestenes 

(15) 

Lyo ~ =  L2yo = v (22) 

where 

is the relative velocity in the fiducial reference system. 
The timelike bivectors 

0-k -= YkY0 = Y0Y k (16) 

(for k =  1, 2, 3) compose a basis for the relative vectors in the fiducial 
reference system. The pseudoscalar for the fiducial frame is i = yoYlY2Y3 = 
O'10"20" 3 . 

A proper bivector F, such as the electromagnetic field, can be split into 
a part that anticommutes with yo and a part that commutes. The anticommut- 
ing part is a relative vector 

E =-- �89 - yoFyo) (17a) 

while the commuting part is a relative bivector 

iB -= �89 YoFy) (17b) 

Thus, the spacetime split of  F is expressed by writing 

F = E + i B  (18) 

Similarly, the "total angular velocity" in equations (5) and (11) can be 
written in the split form 

fI - ~o~ = e +  ib (19) 

which defines relative vectors e and b. With this definition, a split of  the 
proper equation of motion (10) yields a relative equation of  motion in the 
familiar "Lorentz form" 

d v / d t  = e + v x b (20) 

In Hestenes  (1974b) it can be seen that the proper equation of motion (10) 
is often easier to solve than the relative equation (20). 

A big advantage of the space-time split is that it enables us to separate 
the description of spin precession from the description of translational 
motion. This is accomplished by a split of  the spinor R into the product 
of spinors 

R = L U  (21) 
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and 

Uyo (J = Yo (23) 

The split is uniquely determined by 70, and it determines a unique factori- 
zation of the Lorentz transformation (3) into a spatial rotation in the fiducial 
frame specified by U followed by a boost specified by L. 

In the instantaneous rest frame, the axes of the rigid body may be 
represented by the relative vectors 

ek = U~kff-f (24) 

The rotational motion of the body can be described by three vector equations 

d e k / d t  = ~ x ek (25) 

or equivalently, by a single spinor equation 

d U /  dt = �89 U (26) 

The quantity of greatest interest here is 1), the angular velocity of the rigid 
body relative to the fiducial standard. The algebraic problem of solving for 
1) in terms of e and b defined by (19) is solved in Hestenes (1974a), though 
the calculations given there can be simplified somewhat. The result, from 
equations (4.38) and (4.39) of Hestenes (1974a), is 

f l  = - f l - lb  + (1 + fl)-~v x e (27) 

As shown in Hestenes (1975a), this is a combination of relativistic Larmor 
and Thomas precessions. 

It is worth noting that the classical problems of rigid body rotational 
dynamics are worked out in detail in Hestenes (1985) using the spinor 
methods employed here. 

Equation (27) reduces the problem of finding ~ to determining e and 
b. Concerning the problem of solving equation (26) when 1~ is known, it 
should be emphasized that the time derivative is a fiducial derivative, so 

d~rk/dt  = 0 (28) 

even though the O'k = trk(X) are not constant. It follows that, for 12 sufficiently 
small, equation (26) is solved by 

U(t)-~(l+�89 f~ i~dt)U(O) 
[ fo = l + ) i t r k ( x ( t ) )  l ~ ' t r k d t  U(O) (29) 

It must also be understood that in (29) the fiducial components of U(0) 
are constant, through U(0) is not, because the base vectors ~rk(x(t))  depend 
on t. For practical purposes, however, the ~rk can be regarded as constant 
until integration is completed. 
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4. SEPARATION OF GRAVITATIONAL M O T I O N  AND 
PRECESSION 

Considering gravitational effects alone, equation (19) reduces to 

-wv = e+ ib (30) 

We can evaluate OJv by the method of the preceding article (Hestenes, 1986), 
which gives the equations 

~% =�89 ~ -Vq A 3'. (31) 

where the trivector T is given by 

T =  3/~ ^[ ]  ^ % (32) 

and 

[] A y~ = ~7~([] h ~ ) ^  � 9  ~ (33) 

Here we can drop the convention in Hestenes (1986) of using carets on 
subscripts to distinguish fiducial components from coordinate components, 
because we are now concerned with fiducial components only. 

From (13) we have 

/3 k = V" ,yk = f l y .  O'k (34) 

Therefore 

,or = v~o~  =/3(~Oo+V �9 ~rko, k) (35) 

The most sensitive feasible satellite test of gravitation theory can be 
derived from a fiducial frame specified by the equations 

To = e*Dx ~  ~,o 

"Yk = - - h k V q X  ~  e J 'Vqxk = --3 ~k (36) 

where dp, A, and the hk are scalar functions describing the gravitational 
field. From (36) one can read off the components of the fiducial tensor: 

ho ~ = e*, h2 = 0, ho k = hk, hj k = eX~j k (37) 

for j, k =  1,2, 3. 
The coordinate frame {g. = h ~%} is therefore given by 

go = e * y o  - hk'Yk, gk = e xTk  (38) 

For purposes of comparison with the literature, using (38), we evaluate the 
metric tensor g ~  = g~ �9 g~, with the results 

goo = e 2 * - ~  hk 2 
k 

gok = -- eAhk (39) 

go --= --eEXt~U 
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We can solve equations (38) to get the reciprocal coordinate f lame { g " =  
E3x ~'} by a method given in Hestenes and Sobczyk (1984). First we compute,  
from (38), the pseudoscalar  

g -= go ̂  gl A g2 A g3 = ee~+3xi 

We also compute 

and 

Whence, 

and 

Therefore, 

ga A g2 A g3 = e3"~Yl 3,2Y3 = e3a3,0 

go A gl A g2 = (er - hk3,k) A (e2X3,1 A 3,2) 

= e 2A (e* 3,03,~ 3,2 - h3 Yl ')/2) 

gO = g l  A g2 A g 3 g  -1 = e-r 

g3 = --go A gl A g2g -1 = e-r (ea'3,0Y13,2- h3Y33,1Y2) i 

= e-X (y  3 + e-a'haYo) 

E3x~ = e-~'Y~ (40) 

[ ] x  k = e-a ( yk ..~ e-,~hk yo) 

This result can be checked by using g~'. g~ = t~'~. 
Now, taking the curl of  (40) and using (33), we get 

[~ A ~ 0 =  ( [ - I ~ )  A 3, 0 

[ ]  A 3,k = 3,k A [[](~ q-e~ ' ) /o  A ( E ] h k + h k [ ] A )  (41) 

We substitute this in (32) to get 

T = yk  A [] A Yk = e -~  ~ Yk A 3'0 A ( ~  hk + h k ~ ) t )  (42) 
k 

We can substitute (41) and (42) into (31) immediately to get expressions 
for the to,. But we want our result in terms of  relative variables, so let us 
first introduce the necessary notation for that end. 

We represent the time coordinate by t = x ~ and introduce the notations 

Ot=3,o'[S], V = 3,0AI-q (43) 

as well as 

h = hktrk, D = ~rkdk (44, 45) 
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Whence 

D ^ h = ( V h k )  ^ o k  

Now (41) assumes the form 

[] ^ 7o = -Vqb 

[] ^ Tk = --crk ^ VaP - trk 0,r + e-'t '(Vhk + hkVA ) (46) 

Also, from (42) we get 

T.  T o = - e - ~ { d , h + h O , A  + V  ^ h - h A  VA} 
(47) 

T" Tk = -e-~ '{dkh +h  OkA - V h k  - hkVA} 

Putting (46) and (47) into (31), we obtain 

~Oo = Vap -�89 + h 0tA + D ^ h -  h ^ VA } (48a) 

~ O k = ~ r k A V A + o ' k a t A - l e - ~  (48b) 

For a weak static gravitational field, equations (48a) and (48b) assume 
the approximate form 

too= V q b - l D  A h, O~k:--�89 (49) 

This is the case of experimental interest. Using (49) in (35), we get 

o% = fl{V(dP - l h .  v) + i(v x VA -1 D  x h) (50) 

Comparing this with (30), we can read off the values of e and b. Substituting 
these results into (20), we get the equation of motion for a particle in a 
gravitational field 

dv 
d t  = fl{V(dP - ~h" v) + v x (v X VA -�89 X h)} (51) 

For small velocities, equation (51) reduces to 

[~ = v x V(A -�89 -�89 x h (52) 

This is in agreement with equation (40.33) of Misner et al. (1973, p. 1118), 
where A = TU and qb = -  U. The reader is referred to this reference for a 
discussion of  physical applications. 

5. GRAVITATIONAL INTERACTION IN THE DIRAC THEORY 

In Hestenes (1967) the Dirac equation without gravitational interaction 
was first put in the form 

Y~O~b3'2T, = eA @ + m~bTo (53) 
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where the spinor r has the canonical form 

t~ -- (p  ei#)l/2 R 

and determines a mobile field 

The vector field 

is the Dirac current, and 

(54) 

(55) 

J = 6yot~ = peo = pv  (56) 

e3 = R y 3 R  (57) 

is equivalent to the so-called "Pauli-Lubanski" spin vector. 
The main advantage of this formulation of the Dirac theory is that it 

employs the spacetime algebra only, without employing complex numbers 
which do not have a physical interpretation. The simplest proof that it is 
equivalent to the conventional matrix form of the Dirac theory is given in 
Appendix A of Hestenes (1973). 

We can generalize equation (53) to gravitationally curved spacetime 
by identifying the y~ with a fiducial frame and noting that equation (55) 
differs mathematically from (3) only in being defined over an extended 
region of spacetime instead of on a timelike curve alone. Therefore, the 
equations of motion (5) must be generalized to give coderivatives in all 
directions, as described by 

y ~ .  D e ~ =  d~e,,+to~ . e , , = f ~ ,  e~, (58) 

Hence (10) must be generalized to 

d~R = l(f~, _ oJ.)R (59) 

An explicit form for f~, in the presence of electromagnetic interactions can 
be found from Hestenes (1973), but that is not of interest here. The important 
point is that these considerations show that the desired generalization of 
the Dirac equation (53) is achieved simply by replacing the operator 0, on 
the left side of (53) by the operator d, + t%. 

Thus, defining a fiducial derivative D by 

D = y"d~ (60) 

and introducing the abbreviation 

we generalize the Dirac equation (53) to 

(D + F) ~by2'~l ~ -  e A ~  + mr (61) 
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This is equivalent  to the derivat ion of  the gravi tat ional  interact ion f rom a 
gauge invar iance a rgument  given in Section 24 of  Hestenes  (1966). 

Along the streamlines of  the Dirac  equat ion,  equat ions (56) and (59) 
give the spinor  equat ion of  mot ion  

dR/d 'r  = �89 - t%)R  (62) 

where 

d/ dz = v.  D = v~d~ (63) 

C o m p a r i s o n  of  ( 6 2 ) w i t h  (11) tells us immedia te ly  that  the gravitational 

effects on electron motion are exactly the same as on the classical rigid body 

motion, which we have discussed already,  including spin precession.  
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